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Abstract: Scientific research on neuro-cognitive mechanisms of autism often focuses on circuits that
support social functioning. However, autism is a heterogeneous developmental variation in multiple
domains, including social communication, but also language, cognition, and sensory-motor control.
This suggests that the underlying mechanisms of autism share a domain-general foundation that
impacts all of these processes. In this Perspective Review, we propose that autism is not a social deficit
that results from an atypical “social brain”. Instead, typical social development relies on learning.
In social animals, infants depend on their caregivers for survival, which makes social information
vitally salient. The infant must learn to socially interact in order to survive and develop, and the
most prominent learning in early life is crafted by social interactions. Therefore, the most prominent
outcome of a learning variation is atypical social development. To support the hypothesis that autism
results from a variation in learning, we first review evidence from neuroscience and developmen-
tal science, demonstrating that typical social development depends on two domain-general pro-
cesses that determine learning: (a) motivation, guided by allostatic regulation of the internal milieu;
and (b) multi-modal associations, determined by the statistical regularities of the external milieu.
These two processes are basic ingredients of typical development because they determine allostasis-
driven learning of the social environment. We then review evidence showing that allostasis and
learning are affected among individuals with autism, both neurally and behaviorally. We conclude
by proposing a novel domain-general framework that emphasizes allostasis-driven learning as a
key process underlying autism. Guided by allostasis, humans learn to become social, therefore,
the atypical social profile seen in autism can reflect a domain-general variation in allostasis-driven
learning. This domain-general view raises novel research questions in both basic and clinical research
and points to targets for clinical intervention that can lower the age of diagnosis and improve the
well-being of individuals with autism.

Keywords: autism; learning; allostasis; social development; domain-general neural circuits;
multi-modal integration; parent-infant synchrony

1. Introduction

Autism is a heterogeneous developmental variation, defined by the American Psychi-
atric Association as a persistent deficit in social communication and interaction [1]. As such,
scientific investigations on autism often focus on social behaviors and their underlying
neural mechanisms. While this approach provides insight into autism, it has two major
challenges. First, social variation is not an inclusive description of autism, as individu-
als with autism also exhibit atypical verbal, cognitive, and sensory-motor profiles [2–5].
Second, the field of social neuroscience still debates the idea that social processing in the
brain is produced by a dedicated tissue, or a “social brain” [6,7]. An alternative approach
considers social processing and social cognition as a complex neural computation, sup-
ported by multiple domain-general processes, including motivation, perception, and motor
control [8]. Considering the complex autism phenotype, along with the challenges of neu-
rally defining social processing as a discrete module, we propose that the developmental
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variation seen in autism stems from variations in domain-general processes, which are not
necessarily “social” per se.

In this Perspective Review, we propose a hypothesis, by which autism is not a “social”
deficit, but rather a variation in learning. Specifically, we propose that in social animals,
newborns depend on their caregiver for allostasis regulation, which is defined as the
ongoing process of regulating the internal milieu [9,10]. This makes the social environment
vitally salient and reinforces allostasis-driven learning of social knowledge and skills. Given
that social knowledge and skills are acquired through learning, domain-general neural
processes that underlie learning can impact social development, including perception,
motor control, allostasis regulation, and multi-modal integration. Variation in such domain-
general processes can affect allostasis-driven learning of social knowledge and skills and
manifest as autism.

To support this view, we review lines of evidence. The first shows that social pro-
cessing in the brain does not depend on a dedicated neural tissue, but rather involves
domain-general neural circuits controlling allostasis-regulation and multi-modal integra-
tion. The second line of evidence shows that typical social development depends on
allostasis-driven learning. We then review evidence demonstrating that the same domain-
general processes of allostasis and learning vary in autism, both behaviorally and neurally.
Finally, we integrate the evidence to propose that autism is not the result of a “broken
social brain” but the manifestation of a variation in allostasis-driven learning.

2. Current Theories on Cognitive Mechanisms of Autism Focus on Social Deficits

Several theoretical accounts in the literature portray the cognitive and psychological
mechanisms that underlie autism [11]. Autism is often explained by impairments in social
cognition, including the ability for the theory of mind and empathy. The theory of mind
account focuses on the ability to mentalize, which is the ability to internally represent
the mind of others, including abstract and hidden information about others’ emotions,
intentions, knowledge, and beliefs [12,13]. Individuals with autism have difficulties in
mentalizing the mental states of others [14,15], have difficulties inferring others’ emotions
and intentions by looking at their eyes [16], distinguishing their own knowledge from
knowledge attributed to others [17,18], and attributing mental states spontaneously [19].
Moreover, the individual ability for the theory of mind is associated with the severity of
further autistic symptoms, such as impeded social communication and repetitive restrictive
behaviors [20]. According to the Double Empathy Problem account [21], individuals
with autism are not only impaired in understanding others but are also less understood by
neurotypical individuals. At the level of the brain, regions that are implicated to support the
theory of mind and empathy display atypical activation and connectivity patterns among
individuals with autism. Specifically, the medial prefrontal cortex (mPFC), and the posterior
and anterior cingulate cortices (PCC and ACC, respectively), which are often referred to as
the default mode network and are associated with theory of mind performance [22,23], have
decreased connectivity in individuals with autism [24–26], as well as atypical structure
and activations pattern [27–30]. Moreover, individuals with autism have an atypical
developmental trajectory [31] and impaired functional connectivity [25,32] between the
temporo-parietal junction and the inferior frontal gyrus, which were also associated with
the theory of mind [33,34].

In addition to social cognition, other accounts explain autism by decreased internal
motivation for social interactions [11]. For example, the Social Motivation theory posits that
individuals with autism experience less internal rewards from social interactions compared
to neurotypical individuals, and seek less social contact [35,36]. This is often explained in
terms of reduced “salience” or the importance of social information for individuals with
autism [35]. In line with this, the Social Orientating hypothesis [37] predicts the earliest
indicator of autism is the lack of attention to social stimuli. Neuroimaging research shows
that individuals with autism have atypical function in the orbitofrontal–striatum–amygdala
circuit and expression of oxytocin receptors within it, which are implicated in reward and
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motivation [35,38–40]. This finding is highly consistent across the neuroimaging literature
in the field of autism research [41].

Both the social cognition and social motivation accounts capture important variations
seen in autism, each focusing on a distorted function in a specific social feature, and its
underlying neural circuitry. Yet, can social motivation and social cognition be considered
dedicated modules that are categorically separated from non-social motivational and
cognitive processes? Other accounts explain autism using more general cognitive processes.
For example, the Executive Function theory [42,43], suggests that autism is caused by
impairments in the ability to organize actions and thoughts, and control impulses. Other
theories propose that the core deficit in autism is differentiating important information
from the context, which makes it difficult for individuals with autism to process complex
stimuli and shift attention. These accounts include the Weak Central Coherence theory [44],
the Context Blindness theory [45], and the Monotropism theory [46]. According to the
Extreme Male Brain theory [47], autism reflects an extreme form of the typical male profile,
favoring systemizing over empathizing [47,48]. Individuals with autism are superior
in tasks that favor systemizing [49,50], have increased attention to detail [50], and are
impaired in tasks of empathy and theory of mind [16,19,51]. This account is supported by
the significantly higher prevalence of autism in males compared to females [52]. Moreover,
males and females with autism are more similar to each other than to neurotypical males or
females, respectively, in neural connectivity [53] and grey matter volume in the left inferior
parietal lobe and operculum [54]. It is suggested that elevated exposure to testosterone
during pregnancy could impact the neural development of the fetus, favoring extreme
masculinization of the brain [55].

We propose that not only autism, but sociality at large is not a dedicated module
and that its mechanisms can be explained with a domain-general account. Specifically,
social processing does not depend on a dedicated neural system. Instead, social processing
involves domain-general neural mechanisms that control allostasis-regulation and multi-
modal integration. These circuits support the processing of both social and non-social
information, with no categorical distinction between “types” of information [8]. The idea
that social processing is not a dedicated module but rather, is supported by domain-general
neural circuits, has implications for the conceptualization of autism and its underlying
neural mechanisms.

3. Neural Basis of Social Processing and How It Varies in Autism

A large body of evidence from the field of Social Neuroscience portrays the neural
circuits that are consistently involved in social processing. Specifically, neural activity and
connectivity within a group of cortico-limbic brain regions are consistently involved in the
neural processing of social information. These regions include the subcortical regions in
the amygdala, nucleus accumbens (NAcc), and hypothalamus [56–59], and cortical regions
in perception and action cortices [60], limbic cortices in the ventral anterior insula and
cingulate cortex [61,62], and other association cortices in the ventromedial prefrontal cortex
(vmPFC), ACC, and PCC [63,64]. Moreover, coordinated function and dopamine secretion
within these regions is associated with improved social behavior in humans [65–67] and
non-human mammals [68–70].

While these regions are repeatedly reported to underlie social processing across the
literature, they are not dedicated or specific to social processing. The amygdala, NAcc
insula, and ACC have a visceromotor role and via the hypothalamus, they regulate the
internal milieu of the body through the autonomic nervous system [71], and the endocrine
system [71–73]. The amygdala, dorsal ACC, and ventral anterior insula are also considered
part of the salience network, which engages when facing important information in the
world [74–76], and together with sensory and motor regions patriciate in perception and
action in salient situations, whether social or non-social [77–80]. Association cortices in
the vmPFC and PCC are involved in the representation of information about the world,
including rudimentary and abstract concepts, and are considered to be part of the default
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mode network, which has a role in mentalization and theory of mind [22,23]. Altogether,
the evidence suggests that social processing in the brain relies on domain-general processes
of visceromotor control on the internal milieu of the body (allostasis), perception-action in
face of salient stimuli, and representation of abstract knowledge (Figure 1).
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Figure 1. Domain-general neural circuits support social processing. Social processing in the brain does not rely on dedicated
tissue, but on domain-general circuits that control allostasis, and multi-modal integration, including: (A) Visceromo-
tor circuits that control allostasis, including, the amygdala, nucleus accumbens (NAcc), hypothalamus, and pituitary
(in yellow) [71]; (B) Cortices of perception and action that perceive the environment and control behavior (in green);
(C) Association cortices including limbic cortices in the anterior cingulate cortex (ACC) and insula, as well as the medial
prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) [81]. With experience, association cortices integrate multi-
modal information and represent it as concepts, including emotion concepts and concepts about the mind of others [30,64]
(in blue). Altered function in these circuits, which characterizes individuals with autism [82–84], supports the domain-
general view of autism.

Individuals with autism show atypical connectivity within the salience and the default-
mode networks [82–84]. Children with autism show hyper-connectivity within regions of
the default-mode network, compared to neurotypical children, which is associated with
the degree of their social impairment [24,26]. Adults and adolescents with autism show
reduced connectivity in the default mode network compared to neurotypical controls [85],
and children with autism display hypo-connectivity in the salience network, compared
to neurotypical children, which is associated with sensory and social symptoms [86].
In addition to the default mode and salience networks, altered connectivity patterns are
also found in other domain-general neural circuits among individuals with autism. This in-
cludes weaker connectivity between the amygdala and the medial prefrontal cortex [38,87],
between both the amygdala and the PCC and temporal lobes [87,88], and between the
amygdala and the striatum [87]. Atypical function in this circuit is associated with de-
creased social motivation and social saliency [35]. Altogether, when considering the neural
phenotype of autism in humans, the domain-general nature of the neural circuits that are
affected in autism supports the idea that the neural variation that underlies autism is not
exclusive to social processing.

4. Social Development Depends on Allostasis-Driven Learning
4.1. Allostasis Regulation Shapes Social Learning

Optimal social development and well-being in children depends on the extent to
which infants and parents are attentive to one another, and reciprocate affective states
and behavioral communication cues, a term coined as parent-infant bio-behavioral syn-
chrony [89,90]. The idea that synchronous parental care is adaptive for children is intuitive.
However, the mechanisms in the child via which synchrony promotes learning and devel-
opment remain unknown. In order to understand the mechanisms of social development
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in children, a key scientific challenge is to recognize key processes in the child via which
parent–child synchrony in early life optimizes learning and development.

Recent literature points out that parent–child synchrony is adaptive because it helps to
regulate the biological and psychological demands of the child, or their allostasis [8]. Since
human infants are helpless in maintaining their ongoing regulatory needs, they depend
on a dedicated caregiver for allostasis regulation. Parents feed their infants to regulate
their diet and immune system, sing and touch their infants to regulate their arousal and
temperature, and control many aspects of the infants’ autonomous nervous system [8,91,92].
Parent–child synchrony is a useful strategy for the social regulation of allostasis, which
is highly rewarding to both parents and children, and effectively reinforces physical well-
being, as well as social bonding and social learning. By being cared for, infants learn to
socially interact in order to meet their allostatic demands, as biological primal needs for
survival motivate infants toward social learning. Therefore, it is not synchrony per se that
supports development and learning but rather its regulatory consequences on children’s
allostasis [8,93].

As allostasis regulation is key for social development and learning [8,94,95], variation
in children’s ability for allostasis regulation can adversely affect the rewarding experience
of social interactions. This can result in reduced social orienting, social seeking, social liking,
and as a result, deficient social learning, which are central characteristics of autism [35].
Indeed, children with autism show impaired patterns of allostasis regulation (see a review
of empirical evidence in the next section), and it is suggested here that this can shift the
trajectory of learning and by that determine the developmental phenotype of autism.

4.2. The Social Environment Shapes the Multi-Modal Representations of Perception and
Action Patterns

The human brain is relatively immature at birth. One of the prominent neural fea-
tures that are missing in newborns is the ability for multi-sensory integration, whereby
information from different modalities is synthesized and used in concert [96]. This inte-
grative capability gradually develops during postnatal life as the brain gains experience
perceiving consistent multi-modal patterns in the environment, and gradually representing
them as rudimentary concepts [8,97,98]. Since humans are social animals and infants
completely rely on the caregiver for survival, the infant’s environment is essentially social,
and the most prominent sensory patterns in the infant’s environment are of other humans.
As a result, the first rudimentary concepts that infants acquire are social concepts [8,92].
For example, by repeated interaction with the caregiver, infants gradually recognize the
spatial organization of the caregiver’s visual, auditory, olfactory, and tactile features and
form a concept of mommy (or any other caregiver) [8].

Mommy is not only the most consistent pattern of information in the environment, it is
also the most salient and potentially rewarding because it is essential for the infant’s allosta-
sis. By integrating exteroceptive social information about the caregiver with interoceptive
rewarding information about allostasis, the caregiver concept is quickly learned and repeat-
edly reinforced. High statistical regularity in the integration between the caregiver and
allostasis regulation promotes social motivation and reinforces learning of social concepts
and behaviors. As caregivers regulate infants’ allostasis, infants gain experience not only
in rudimentary perceptual concepts, but also in more abstract concepts such as emotion
concepts, and representations of others’ minds [8,95], and perception-action concepts, such
as breastfeeding, synchrony, or vocalizations [95]. Thereafter, infants learn to share their atten-
tion with the caregiver [99] and to coordinate explicit knowledge (social and non-social)
by acquiring language [100]. Synchronous parenting fosters the child’s ability to learn
and use concepts [101] and can determine the content of concept learning by infants.
For example, parental use of mental state language during parent–infant interactions pro-
motes children to label their own emotions [102] and later, to infer and represent other
people’s mental states [95,102–104].

Learning concepts and skills is a key domain-general process that underlies typical
development. Social regulation of allostasis during development promotes social motiva-
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tion and provides a strong driving force for social learning. However, social learning is not
a special type of learning but rather more pronounced in early life. This is because of the
high relevance of social information to the infant’s allostasis and the high prevalence of
social information in the infant’s environment (see Box 1 and Figure 2).

Box 1. Learning in Typical Social Development and Autism.

1. Concepts
Concepts (C) are multi-modal representations of statistically regular patterns of information in

the external world and the internal milieu. A central aspect of development is constructing concepts.
During development, infants detect statistical regularities in the environment and organize them
into concepts [105–107]. Concepts can be thought of as spatial and temporal patterns of information
that enable the brain to perceive the world in a multi-modal meaningful way and to prepare for
upcoming allostatic and environmental demands [71,108]. Since humans are social animals and
depend on their caregiver, the first concepts infants acquire are social [8]. These include rudimentary
sensory concepts such as a “face” to more abstract concepts like “mommy”, and more complex
sensory-motor concepts like “breastfeeding” and “synchrony” or “crying” [95]. Consistent patterns
of non-social exteroceptive-interoceptive-motor information are similarly constructed as concepts,
and there is no categorical difference between social and non-social learning.

C(t) = f (introception(t), exterocepton(t), motor(t))

C is a function of mental representations of consistent multi-modal patterns of information
from interoceptive, exteroceptive, and motor sources (Figure 2).

C(t + 1) = C(t) + η(t) · ∆I

Learning and updating of concepts depends on the rate of learning (η) novel information (∆I)
from interoceptive, exteroceptive, and motor sources.
2. Learning Concepts Depends on Allostasis

The elementary ongoing process of optimizing the body’s internal milieu shapes learning
through motivation and reward. Patterns in the world that are relevant for allostasis (learning them
reinforces allostasis regulation) are efficiently learned as concepts.

The rate of learning (η) of a concept depends on its impact on allostatic regulation

η(t) ∝
∂ log(A)

∂ log(C)
Here, the sensitivity of allostasis to a certain concept is represented as (∂log(A))/(∂log(C)).

For example, concepts (C) with a large impact on allostasis (A), including social concepts such as
mommy or any other caregiver, are learned faster than concepts with minor impact on allostasis,
such as many non-social concepts.
3. Autism

According to this model, autism results from an atypical rate of learning, due to variation in
domain-general processes of perception (interoception, exteroception), motor control, allostasis
regulation, or their multi-modal integration into concepts. Variation in any of these processes can
interfere with the rate and proposition of concepts and manifest as atypical social development.
These domain-general processes are not orthogonal to one another, but rather represent different
levels of observation, which can be prognostic of autism. For example, an atypical phenotype in
infants in physiological measurements of allostasis, behavioral measurements such as synchrony
with the caregiver, or neural measurements such as the formation of multi-modal neural tracts can
serve as bio-behavioral indicators for future diagnosis of autism.
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Figure 2. Basic ingredients of learning favor social development. During development, infants
organize sensory-motor information into concepts. Information includes the exteroceptive perception
of the environment, interoceptive perception of the body, execution of motor control over behavior
(skeleton muscles), and visceromotor control of the internal milieu via the autonomic and endocrine
systems (contraction of smooth muscles, hormonal secretion from glands). Two domain-general
processes that impact learning are statistical learning of the environment [109–111] and motivated
learning guided by allostatic demands [93]. In social animals, the environment is primarily social,
and allostasis is regulated primarily via social interactions. Therefore, the first and most promi-
nent learning humans do is social. Accordingly, a deficiency in multi-modal integration of the
basic ingredients that determine the ability to learn concepts, including perception, motor control,
and allostasis regulation, results in atypical social development.

5. Individuals with Autism Show Variations in Domain-General Processes
of Learning

The hypothesis that autism results from a variation in allostasis-driven learning raises
specific predictions by which individuals with autism show an atypical phenotype in
the domain-general processes of perception (interoception, exteroception), motor control,
allostasis regulation, or their multi-modal integration. In the next section, we review
evidence that the basic ingredients of allostasis-driven learning vary in autism.

5.1. Individuals with Autism Show Atypical Patterns of Allostasis Regulation

Empirical studies demonstrate that individuals with autism have atypical patterns of
allostasis regulation [112,113]. Specifically, children and adults with autism exhibit atypical
eating patterns [114], excessive water drinking [115], and disturbed sleeping patterns [116].
Such disturbed control over allostatic processes potentially stems from disturbances in
the accurate perception of the internal milieu or interoception. Individuals with autism
have reduced awareness of interoceptive signals of their body, such as reduced thirst
awareness [117], reduced performance in heartbeat tracking tasks [118], and hyposensitivity
to pain and proprioception [119], compared to neurotypical individuals. An infant’s
ability for interoception is necessary to ensure attuned parental care, which is adapted
to the infant’s allostatic needs. For example, to be fed, the infant’s brain must sense a
decrease in plasma glucose levels through interoception, and socially communicate it to
the caregiver via motor control over cry. This signals the allostatic need to the caregivers
and elicits parental response aimed to regulate the infant allostasis. By attending to the
infant’s allostatic needs, the parent reinforces further social behavior in the infant [8].
Disrupted interoception in infancy can interfere in three central processes that impact
social development. First, it impairs the infant’s signals for regulation and therefore the
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caregiver’s ability to accurately regulate the infant, and later-on the infant’s ability for
self-regulation [120–122]. Second, it impairs social motivation of the infant by reducing the
rewarding value of social care. Third, it impairs social learning by disrupting the statistical
regularity of allostatic-based reinforcement derived from social care (see Box 1).

5.2. Individuals with Autism Show Atypical Perception and Motor Function

In addition to altered interoception in autism, several studies report perceptual varia-
tion in autism across different exteroceptive modalities [123–127]. For example, individuals
with autism have altered visual perception, including superior performance in detail or
pattern recognition tasks [128,129], and in visual search tasks [130], along with significant
deficits in motion processing tasks [131,132]. Auditory perception variation in autism is
also reported [133,134], showing that individuals with autism tend to have improved pitch
memory [135] but lower recognition of speech in noise [136] compared to neurotypical
controls. Individuals with autism also show a variation in motor function [137] and often
show stereotypical repetitive motor movements [138] and stereotypical vocalizations [139].
A growing body of evidence highlights the importance of such sensory-motor variations in
the prognosis of individuals with autism [140]. Importantly, the sensory phenotype of chil-
dren with and without autism significantly correlates with their social skills [141,142]. Thus,
sensory-motor variations can impair learning (both social and non-social), as it can impair
the formation of multi-modal associations and constructing concepts. Given the social
environment human infants develop in and the importance of social interactions to the in-
fant’s allostasis, many perception–action patterns that infants learn are social. For example,
forming action-dependent concepts and their quick updating is crucial for synchroniza-
tion and communication with the caregiver during social interaction. Evidence shows
that motor control over vocalizations is crucial for synchronous social behavior [143,144],
and mother–infant attunement [67]. As such, variation in perception and in motor functions
during development can result in atypical trajectory of social development.

5.3. Individuals with Autism Show Atypical Learning

Impairments in learning among individuals with autism are reported at the neural and
behavioral levels. At the neural level, evidence in multiple animal models of autism shows
that genetic mutations associated with autism cause altered expression and translation of
dendritic proteins that mediate synaptic plasticity [145–150]. In humans, individuals with
autism display impairments in long-term potentiation evoked by transcranial magnetic
stimulation [151,152]. At the behavioral level, individuals with autism show impairments
in reinforcement learning [153–155]. Reinforcement learning is guided by the motivational
state of the organism approaching a reward or avoiding a punishment [156,157]. Allo-
static demands impact the motivational state of an individual and are therefore a central
organizing principle of the nervous system, which guides learning and behavior [158].
Dopamine transmission in cortico-striatal circuits is central in learning about rewards and
punishments and disturbances of the dopaminergic system in cortico-striatal circuits have
a key role in psychopathologies that involve reinforcement learning [158–160]. Individuals
with autism do not conform to standard patterns of reinforcement learning and are less
affected by rewards and punishments [153,155,161]. Accordingly, autism is associated
with aberrant patterns of dopamine signaling in the ventral tegmental area and substantia
nigra, affecting reward processing and goal-directed behavior [162]. The distorted pat-
terns of reinforcement-learning support the significance of allostasis-driven learning in
autism. In addition to reinforcement learning, individuals with autism show impaired
motor learning, specifically in tasks involving the acquisition of novel movement patterns
acquisition [163], and implicit procedural learning tasks [164]. Moreover, individuals with
autism show impaired language learning, and up to a third of children with autism are
minimally verbal [165]. Among verbal children with autism, language is acquired in a
substantial developmental delay. While typically developing children produce their first
words at the ages of 8 to 14 months, the mean age of first word-use in children with autism
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is three years [166]. Importantly, the age of first word-use is correlated with the prognosis
of children with autism [167]. Individuals with autism also display an atypical use of lan-
guage, for example, children with autism over-imitate phrases they hear (“echolalia”, [168]),
and exhibit syntactic impairments [169]. Such impairments in language acquisition can
reflect impairments in concept use and acquisition. Children and adults with autism show
differences in conceptualizations and have difficulties categorizing new information by
forming prototypes and generalizing previously learned concepts to new situations [170].
Leider and colleagues recently demonstrated that individuals with autism rely more
on longer-term statistics rather than recent events and show a slower motor response
to changing sensory patterns of non-social stimuli. This suggests that individuals with
autism are slower to form and represent statistically regular patterns of information [171]
(i.e., concepts), possibly because of aberrant updating of probabilistic representations of
the environment [172]. This evidence emphasizes that the different aspects of the autism
phenotype, from low-level perception-action through complex social behaviors, are asso-
ciated with a general variation in learning. This suggests that a domain-general view to
development, by which variation in basic processes of learning can manifest as atypical
social development, should be considered as a mechanistic approach to studying autism.

6. Implications

Considering the role of allostasis regulation, and multi-modal perception and action in
social development can impact the way autism is studied. Our framework portrays a line
of new hypotheses and research questions on the neurobehavioral mechanisms of autism.
Specifically, this framework calls for testing the mechanistic role of learning in autism, along
with the domain-general ingredients of learning including allostasis regulation, perception
(both interoception and exteroception), motor control, and multi-modal association.

This framework can also impact how autism is diagnosed and treated. As of today,
the average age of diagnosis in children is three years, when developmental delays are
observed in communication and social behavior [173]. The age of diagnosis is important
for useful interventions that improve the child outcomes, including self-reliance and well-
being [174]. Decreasing the age of diagnosis is one of the key priorities in the field of autism
research [175,176]. According to our model, distinct neural and behavioral features that are
potentially relevant for identifying autism can be reliably measured in very young infants.
For example, current research methods enable to measure in very young infants allostasis
regulation [177], parent-infant synchrony [89], the rate of learning new concepts [178,179],
and the formation of multi-sensory neural tracts [180,181]. We hypothesize that variation
in these measurements in early infancy can be indicative for a later prognosis for atypical
social development, and can potentially serve as bio-behavioral markers for autism early on.
Moreover, there is a long-standing debate regarding the clinical distinction between autism
and other spectrum disorders, such as Asperger’s syndrome or pervasive developmental
delay not otherwise specified (PDD-NOS) [182,183]. Future empirical research is called
for in order to test whether the distinct neural and behavioral features described here,
including perception, motor control, and learning can differentiate autism from typical
development and other spectrum disorders in young children [182,183].

The model proposed here points to potential measures that can be taken to improve
the behavioral outcome in children. For example, clinically targeting the dyad, which is
considered here as the developmental medium of infants, can be operative in optimizing
the regulation and development of every child. Numerous studies show the importance
of family involvement in therapy programs [184,185]. Multiple intervention programs
target parental care to improve the infant’s behavior, symptoms, and well-being [186,187].
For example, Naturalistic Developmental Behavioral Interventions (NDBI) [188] and Ap-
plied Behavioral Analysis (ABA) [189] are evidence-based approaches for early intervention
in infants with autism. Both NDBI and ABA target parental behavior and were shown
to induce significant improvements in the social development of infants [189–192]. This
supports the proposed model, which emphasizes the importance of the social environment,
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and proposes a potential mechanism for how social regulation of allostasis determines
concept learning, and therefore social learning [8]. Future research that clinically aims to
improve the dyadic synchronization and allostatic regulation of children can potentially
improve children’s well-being, their skill of synchrony, and potentially optimize social
learning and development in both typically and atypically developing children. More-
over, our approach also points to basic processes of physiological regulation, as well as
interoception as basic ingredients of optimal social development, and targets of clinical
intervention that can improve children’s well-being and development.

7. Conclusions

We propose an alternative framework for autism, by which it is not a social disorder,
but a general variation in allostasis-driven learning. This calls for both basic and clini-
cal research to provide novel in-depth knowledge on mechanisms of autism as well as
novel clinical paths for intervention that can improve the prognosis of individuals with
autism and lower the age of diagnosis. This framework also invites investigating other
psychopathologies with a domain-general view to better understand their mechanisms
and develop new treatments.
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